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Neuromemristive Systems
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Neuro-inspired CMOS/memristor hybrid systems for the next-generation of
intelligent computing

e Application-driven, top-down design
e Abstractions of biological computation principles
* Roles of subcortical brain regions
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Neuromemristive Systems Overview

Applicability

Plasticity Energy Efficiency

Scalability

==Neuromemristive Systems ~=Compute-Storage Systems
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Memristors for Plasticit

*2-terminal device with state-dependent Ohm’s

Law (Chua, 2011): 2
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* Redox RAM has best performance?:

Memristors

Metric PCM STT-RAM RRAM | Targets
Dynamic Range (U /0) 1000 1000 >4
Number of States 100 100 20-100
Retention years  years years years years
Energy (pJ/bit) 0.1-2.5 0.1-3 0.01
Endurance (cycles) m 101 102 10°

1Compiled from (ITRS, 2014; Yang et al., 2013; Kuzum et al., 2013; Ishigaki et al., 2010)
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Device Landscape
Devices
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Memristors as Synapses

* Focus has been on synaptic weighting
* Small footprint and simple structure enables high density

* “Similarity” between biological synapse and memristive
devices (Jo et al., 2010)
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Synaptic Functions

*Provide physical interconnect
* Modulate signals

*Facilitate adaptation/learning

Sij = Wij%;

* Memristive devices provide all 3 in one
medium




Application Landscape
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Epileptic Seizure Detection
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Epileptic Seizure Detection

ﬁ Epileptic seizure is a chronic
disorder of the central nervous
system

* Onein 26 people will develop this
disorder at sometime in their life
(www.epilepsy.com)

* |t can be often detected through

analysis of electroencephalogram
K (EEG) signals /

K Served as an early alert system to \
preclude any unwanted exertion

* Controlled delivery of drugs to
reduce side effects

e Continual monitoring for proactive
interventions for antiepileptic drug

k failures /
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Ab-Initio Architectural Framework

Time Series Spikes/Spike Processed
Rate Input
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_5 Fixed Connections

"""""" > Trained Connections OxRAM Memristive Devices

* Partially-trained ANN with a recurrent network topology (Jaeger,2001)
* Recurrent (Reservoir) layer of nodes interconnected with random
weights
* Read out layer with trained weights

NICE,2015 11




Closer Look

/ .~ Reservoir response Excitatory synapse—x / Reservoir response [ synapse }
- - _I 1 H = i
S e e %
SN N ; =3 :

Y synapse ——@ Inhibitory synapse ——@

Output Output

€ Nodes are randomly connected A € Each node is connected to only A
* Varied degree of connectivity two neighbors
* Needs more dense architecture to  Low degree of connectivity

N be implemented y . Easily implemented in hardware y
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Reconfigurable Neuronal Arrays

West

* Contains a neuron and all of its
associated synapses
* MUXs are used to route signals to pre-
\_ specified paths PAN
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Epileptic Seizure Detection System
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Output Vs Threshold

Output Value

16
x 10*

BICA 2014

Accuracy
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Accuracy Vs threshold
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Speech Emotion Recognition
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Speech Emotion Reco

K Recognize the emotional status of a\ /

human, based on speech, such as
anger, fear, happiness etc.

e Useful in human-computer
interaction

is simpler and requires less

with other inputs such as facial

K expressions.

* Using speech for emotion recognition

computational resources compared

AN

The Berlin database of Emotional
Speech
e Ten actors(five male and five
female)
e Ten different daily German
sentences
* Seven emotional status
800 Wave files
Neutral vs. Anger
e 78 Neutral
* 78 Anger

\

NICE,2015
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Feature Extractor
. MelFiter

(e Extract desired components of )
emotional information.

* 8 Mel-Filter bands were used to
measure energy at different Mel-

\__Frequencies )

Spectrum Analysis

CISDA 2015
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Features (Neutral and Angry)
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Framework Optimization

Accuracy vs Alpha \
Accuracy vs Reservoir Nodes and Connectivity

Accuracy [%]

0.7 k - . - k k k A A Number of Nodes Connectivity [%]
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Apha Value

CISDA 2015
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Accuracy Vs threshold

Test Expected

==Train = 0.9610
—Test = 0.96553
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Speech Recognition
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Vision
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Visual Feature Extraction
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Linear and Logistic Regression
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[Stochasﬁc training algorithms reduce the implementation cost (> 3X area reduction)

of regression problems on neuromemristive substrate
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Caltech101 Dataset after Preprocessin
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Preprocessing

Dimensionality

Reduction
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* Area cost increases with more dimensions

[T Synapses|

R R R Ny R N AR
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Number of LPP Output Dimensions d

*By reducing from 60x60=3600 dimensions to
100 dimensions, we get a 97% reduction in
the size
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Honorable Best Paper Award at VLS| Design 2015
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Classification with On-chip Variations
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Secure Neuromemristive Primitives
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Countermeasures for Power Attacks

Keccak Algorithm Implementation
SHA-3
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Correlation Power Analysis Attack

/ correlation of key guesses over time

Highest Correlation = #orre;t Guess

A

* W ! L ‘:‘\ IW
’”ﬂ, e ggw* !
””'rr' il

Pearson Correlation Coefficient

\

NMW

300

200

100 190
100
time 190 %0
200 O Keyguess Byte (0-255)

IEEE TNANO

NICE,2015

34



Correlation Power Analysis Attack

8:48:1 Network S-Box

Using a Hamming Weight leakage model, no keys were successfully guessed after

40,000 traces
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Looking Forward

*Circuit models/architectures embedded in
small scale systems

= Simulation complexity of circuit models
= Neurogenesis/Neuronal Pruning

*Nature vs. Nurture

*|t is yet to be seen where neuromorphic/
neuromemristive systems will make a large
Impact

*No (good) standard metrics
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“Once we accept our limits, we can
go beyond them” —Albert Einstein

Mind in Motion @ Dr. Miguel Nicolelis
FIFA 2014, Exoskeleton
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