


Neuro-inspired? Weakly.

* (I) Develop vision systems that have the same visual abilities as
humans (or better). Pass visual Turing tests. Develop practical
computer vision systems.

* (Il) Get some inspiration from known properties of the brain. Try to
explain some aspects of the brain.

e Can we derive the structure of the human visual system from first
principles?



Human Visual Abilities

* The Human Visual System has many more abilities than current
computer vision systems. These include:

e (I) Robustness and Flexibility.

e (II) Unsupervised Learning from small numbers of examples: 1-shot
learning.

e (IV) Most Importantly the ability to perform an enormous number of

visual tasks.
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Complexity — Fundamental Problem of Vision

The fundamental problem of vision is how to deal with the
astronomical complexity of images, scenes, and visual tasks.

For example, considering the enormous input space of images and
output space of objects, how can a human observer obtain a coarse
interpretation of an image within less than 150 msec?

How can the observer, given more time, be able to parse the image
into its components (objects, object parts, and scene structures) and
reason about their relationships and actions?



Research Program

e (1) Theoretical Framework. Visual Architectures which are capable of
performing all these tasks.

e Key Problem — dealing with complexity.

* (1) Applying this framework to natural images. Developing working
computer vision systems. Compete on challenging datasets.

e Key Problem —scaling from “toy world” to “real world”.

* (lll) Relate the framework to behavioral, electrophysiological, imaging, and
other studies.

e Key Problem —how much do we really know about how the brain does
visual processing? TS Lee. D.K. Kersten.

 (IV) Hardware: Vision Cortex in Silicon. NSF Expedition in Computing.
PI: Vijaykrishnan Narayanan.



This Talk.

e Concentrate on (l) the Theoretical Framework.

Basic Principle: compositionality. Build models recursively from re-usable
components.

* (I1) Hlustrative examples showing that these ideas can work on complex
images and tasks.

e (lll) Speculations about neuroscience. Beyond McCullough and Pitts
neurons? Dynamic binding.

 (IV) Hardware Implementations? Prof. V. Narayanan.

e Related Work — compositional models (S. Geman), probabilistic grammars
|(\?I.C. %hudz)and D.B. Mumford). Analysis by synthesis (T.S. Lee and D.B.
umford).



Probabilistic Grammar Markov Models (PGMM)

* PGMMs (L. Zhu et al. 2006, 2009).

e Visual Tasks:

e Unsupervised learning of object class models.

e Learning in presence of clutter.

e Learning models of different object classes without supervision.

* Learning from small numbers of examples (towards one-shot
learning).



PGMMs: Interest Points and Attributed
Features.

e Basic Ingredients.
* Interest Points (IPs).

* |Ps described by position X, orlentatlon Theta, attributed features
(AF).

e Learn dictionary of IPs by clustering on the AFs.
e AF-1, AF-2,....,AF-N

e Technical Details: choices of IP detectors and AF descriptors.



PGMMs: Spatial Relations and Triplets

* Objects are compositions of IP’s.

 Basic Building block — triplets of IPs grouped based on spatial
relations. {(AF-1, AF-2, AF-3, spatial relations),....}.

* Note: much more mathematics in L. Zhu et al. (2009). Here | give the
executive-level summary.



Unsupervised Learning by Structure Induction

e Start with default background model (independent IP’s).
e Search for frequently occurring IP-Triplets.
e Grow object models by: (i) adding OR nodes, (ii) add triplets.
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* Intuition: MDL. Better encoding of images. Constructing representations
dynamically.



PGMMs: Results for Learning

e Unsupervised learning of object classes in noisy background (cocktail
party problem).

e Unsupervised learning of mixtures of object classes — without
knowing how many classes exist.

e Learning models allowing for spatial transformations.

e Learning from small numbers of examples (only partially explored).




Mottaghi and Yuille 2011.

e Other examples — different features (HOG Bundles) — databases.




PGMMs and Neurons?

* PGMMis include spatial relations and clustering. This differs from the classical
perceptron — artificial neural network model.

 Relate to classical neural ideas: (i) Binding problem/mechanisms (Von der
Malsburg, Abeles), (ii) shifter circuits (Olshausen and Anderson)

e Closest neural network model — L. Valiant “Circuits of the Mind”. Valiant shows that
clustering, memorization, and binding can be performed by small variants of
perceptron models.

e Can PGMMs be implemented by neurons? “Alan, neurons are so complex that they
can probably do all the things you want them to”. Bartlett Mel (USC).



Hierarchies and Compositional Models

e .Addressing the problem of complexity.

e Recursively build hierarchies of dictionaries — triplets of triplets of
triplets...

e Starting point — edgelets. Dictionaries building by recursive clustering.
e Basic building block — part-subpart composition.
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Key Concept: Compositionality

« Compositionality. The probability models for reasoning tasks are
built by combining elementary models by composition.

o Allow the system to answer many different questions based on
the same underlying knowledge structure. No need to learn every
task separately (e.g., detect, locate, recognize, parse objects by
the same model).
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* Key Concepts.
e Part-sharing — efficiency of representation, inference, and learning.

* Executive-level summary — part descriptions are less detailed than subpart
description. Hierarchical representation. (Boss knows there is an ‘elephant
in the room”, low-level executive knows where its foot is).

e Corporation Metaphor.

e Objects are represented in a hierarchical distributed manner.



Hierarchies: Unsupervised Learning

e Unsupervised learning by recursive clustering (L. Zhu et al. 2008, 2010).
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e Breadth first search over space of generative models of images.

e Constructing hierarchical dictionaries. Dictionaries can be re-used to learn
novel objects.



Hierarchical Architecture
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* Inference Algorithm.

e Bottom-up Pass — propagates hypotheses for low-level parts to form
hypotheses for high-level parts.

e Low-level parts — local context — ambiguous. Many hypotheses needed.
* Higher-level parts — more structured, less ambiguous.

* Top-down resolves ambiguities in bottom-up staFe. Removes low-level
hypotheses which are not validated by high-level hypotheses.

 Formally —this can be formulated as dynamic programming (e.g., like the
inside-outside algorithm for stochastic context free grammars in Natural
Language Processing).



Hierarchies: Complexity Analysis.

 Serial Formulation (e.g., as in L. Zhu et al. 2008, 2010).
 Parallel Formulation (Yuille and Mottaghi 2013, 2015):

* Make copies of nodes in the graph. “Convolutional Compositional
Models”.

e Analysis: inference complexity (serial formulation) and memory
complexity (parallel formulation).

e Exponential gains — depending on how many parts can be shared, and
gains from “executive summary”.
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Figure 12: The curves are plotted as a function of h. Left panel: The first plot is the case where
My, = a/(q"). So we have a constant cost for the computations, when we have shared
parts. Center panel: This plot is based on the experiment of Zhu et al. (2010). Right
panel: The third plot is the case where M}, decreases exponentially. The amount of
computation is the same for the shared and non-shared cases.




Hierarchical Algorithms for Motion Inference

* Motion Estimation (S. Wu el al. NIPS 2010).

* Horizontal Inference — or Feedforward and Feedback?

e Psychophysics.
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Applications — Objects, Parts, Segmentation.

e Human Pose Detection. Human 3D structure estimation. Semantic Parsing
(Caveat — uses range of techniques including DCNNs).

e X. Chen and A. Yuille (NIPS 2014), C. Wang et al. (CVPR 2014), X. Lian at el.
(BMVC 2014), X. Chen et al. (CVPR 2014). J. Mao et al. (NIPS 2013)

Figure 2. (a) Our graphical model where the nodes represent the holistic object and its body parts are position, scale,
and switch variable (). The holistic object is shown in yellow and some example body parts are shown in red, green, and bluc. The rest
of the body parts are shown with white rectangles. (b) The switch variables decouple nodes from the graph, depending on which parts are
detected, and enable the model (o deal with different detectability patierns. Boxes with dashed border are those decoupled from the graph.
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summary

* (1) Theoretical Issues — Key Problem of Vision. Complexity.

e Compositionality, Part-Sharing, Spatial Relations, Executive Summary.
e Visual Architecture — Representation, Inference, Learning.

* Ability to perform large range of visual tasks.

e (I) Natural Images and Dataset Performance. Task — scale up the algorithms
to the complexity of natural images.

e (Ill) Relations to Neuroscience. Consistent with neural models —dynamic
binding (von der Malsburg, Abeles, Hummel), shifter circuits (Olshausen
and Field), circuits of the mind (Valiant), complex models of neurons (Mel).

* (IV) Relations to Hardware. In progress. Vision Cortex in Silicon.
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Local Ambiguity: Psychophysics in the Wild.

"

Roozbeh Mottaghi et al. 2013, 2014.

Image regions are locally very ambiguous.

Airplane
Car
Boat
Sign

Building

Hybrid Human-Machine Semantic Segmentation



Why is Vision Hard?

* Look at the raw input displayed as a set of numbers which plot the
intensity as a function of position (bottom left).

* The images are very complex. They are of the same bike and tree. But
the raw intensities are very different.




Vision is unconscious inference (Helmholtz)

We interpret images by reasoning about the factors that caused them.

Sometimes we make mistakes due to
accidental alignments:
Flying carpets and Levitation.




Theoretical Results

e Studies of Compositional Models (Yuille and Mottaghi
2013).

e Show that you can represent and rapidly access an
exponential (roughly) number of objects and access them
rapidly. Key ldeas: (i) part sharing, (i) executive
summary.

 Models which are generative — enabling top down

analysis by synthesis, prediction, attention — but can also
enable rapid feedforward inference.



Object and Parts: detection and segmentation

e Pascal Images 20,000.

» Detailed labeling of objects
and object parts.

e Silhouettes of 20 objects.

e Parts/subparts of 18 objects.

e Status: Released at CVPR 2014.




Datasets: Image Labeling.

e Pascal Images 20,000.

* Pixels labeled as 1 of 35,60,600
» Categories

e Objects + background regions.

e Status: released
e at CVPR 2014.




Candidate Regions for Objects and Object Parts

e Examples from Bonev and Yuille (ECCV 2014).




The spatial relations.

e Spatial relations between parts.

=

Figure 3. The deformation and scale features used in our model.



Joints and Joint Poses

* The local image information at joints can reliably predict the
presence/absence oi a joint AND the relative positions of neighboring
joints.




Graphical Model: Compositions

e Search for compositions of joints and joint poses which satisfy the
prior spatial relations between joints (as before).




window

Project 3. Extras.

body
light

lic. plate

* Mixture Models
e Results — body, wheels, windows,
e License plates.




Project 3: Extras

* Horses,...

Figure 3: Seven part segmentation examples. For each example, the left is the original image su-
perimposed by the detected leaf node location (green star represents location and red line represents
orientation). The right is part segmentation result. Best viewed in color.



Project 4: 3D object models -- humans.

e Chunyu Wang et al. (CVPR 2014).
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(1) Estimate the 2D joint locations and initialize a 3D pose.
(2) Estimate camera parameters and 3D pose

(1)




