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Why Analog (Physical Based) Processing? 
Digital Hitting Limits of Power Efficiency 

[Marr, et. al, 2012] 

•  Analog (VMM): 
       100 fJ / MAC  
       (10MMAC/ µW)   

•  Other Analog SP 
   similar: 

Mead Hypothesis: 
Analog  x1000 
efficiency improvement 

Power Efficiency wall 
  (Production Ics)  
    1 MAC in 100pJ  
    (10MMAC/mW )   

Source   
VT Mismatch 
(some I-V as well) 

Freq Decomp  
    / Analog FT 
VMM, GMM 
Classifiers  
Adaptive Filters 

(i.e. TI54C) 
Can  
Neuro-Inspired 
Improve 
Further? 

Performance Advantage for  Emerging Architectures  

AnalogSP 
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15 different working FPAA  
ICs since 2004 

Large-Scale FPAAs  Practical Analog SP 

FPAA computing through routing fabric 



One FPAA, Four Examples 

M
ix

ed
-S

ig
na

l F
IR

 

Im
ag

e 
C

on
vo

lu
tio

n 
D

A
C

 in
 R

ou
tin

g 

A
rb

itr
ar

y 
W

av
ef

or
m

 

Constrained Optimization, 
Path-Planning (R grids) VMM, Classifiers, Baseband Comm  Subband Processing  



FPAA Tool Infrastructure 



Neuromorphic Algorithms  Improved Apps 

•  Neuromorphic processing = event based processing 
     uses power only when useful signals are present 
     (“always on” in sensors or further processing) 

Brain is highly power efficient 
    - highly constrained by power available,  
         key to its design (and for Si)  

Building applications (i.e. robotics) makes 
     power constraints real 

Leverage Analog SP ICs for robust system 
     development 



Transistor Channel Models  

[Farquhar and  
Hasler, 2004]  

Blocks for Large-Scale Neuromorphic Systems 

Single Transistor Learning Synapses  

V dd 
V tun 

V d

V g

•  Single Transistor Learning Synapses 
     [Hasler, et. al, NIPS 1994, BMES 1994] 

Si CMOS 
approach can 
achieve densities 
while avoiding 
issues with device 
integration with Si 

130nm STDP synapse data 

Utilizing the physics of physical medium (Si)  
      to efficiently implement computation 



Comparing Physical to Digital Computations 

FG enables analog precision 
   - not imprecise or overly  
           noisy components 
   - Power constrains digital  
           to similar resolutions,  
           worse ODE dynamics 



•  Synapse Array with configurable  
   neuron blocks, STDP and     
   programmable  synapses 

•  Address Event I/O available 
•  Compiled from standard cells 

•  Mismatch Programming Essential 

Synapse Array  
   (30k synapses 
   ~ 3mm2 space 
 10k synapses/mm2) 

WTA network 

Dense Synapse + Neuron IC 



Larger Neuron Experiments 
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•  Neuromorphic 
   Path Planning 



•  Largest supercomputer (~ 3000TMAC)  
        is 104 factor smaller than required 
for neural computation (~ 107 TMAC) 

Why Dendritic Computation? 



Dendrite-Model Wordspotting Classifier 

[George and  
Hasler, 2011] 

Pulse Width 

Pulse Width 

Sensitivity to 
particular delay 
window 
  coincidence 
detection 

Decreasing 
event delay on 
resulting soma 
signal 

[Ramakrishnan, et. al, 2012] 



Scaling of Neuromorphic Computation 
•  Neurobiology: constrained by energy cost of 
    communication (local comm is critical) 

•  Silicon systems also constrained by energy 
cost and complexity cost of communication.   



Neural Classifier Approaches 
VMM-WTA block 

[Ramakrishnan, et. al, 2012] N
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Summary of Learning & Adaptation 

FPPA +  
Memristor (A) 

Application sets IC data flow speed 
   (minimizing memory blocks) 

Learning investigations: faster than real time 
   - same structure, direct scaling of timescales 

Neuron Implementations: FG based learning  
    Synapse types: excitatory, inhibitory, NMDA 
    Experimentally demonstrate 

Memristors: Multi-timescale Adaptation 

Synapses: Not competitive with  
    1T EEPROM cell for density 
     (32nm cell ~ 50nm x 50nm device) 
    Memristor arrays hard (Liu: 40 x 40) 

I = W R V,  ε τ ---- = f(V(t))  

Neurobiology: multi-timescale devices 
    - modulation timescales from 1s to hours 
    - adaptive FG allows approach 
    - memristors enable capability 

dW 
dt 

Early (unpublished) data on receptive field  
    development, different event encodings 

Why Learning?  How about loading cortex… 



Building Silicon Cortex 

1000’s of inputs,  
1000’s of channel populations, 
 one output 

Neuromorphic  Higher Power Efficiency 

10nm: ~4M Pyramidal cell neurons  $20M IC cost for Cortex 
     (digital: 1000 in parallel)                   (~100k chips) 



Neural Classifier IC Applications 
For commercial 10nm potential 


