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Spiking Neural Networks (SNNs) 
• What are SNNs? 

•  Neural Networks that model neuronal/synaptic temporal dynamics 
•  Spike only when the membrane voltage exceeds a threshold 

• Why use SNNs? 
•  Spike events are rare: average brain activity 1-10 Hz 

•  More energy efficient than sending an analog rate. 
•  SNNs use temporal coding but can still use rate coding 
•  Event-driven nature of SNNs fits well with neuromorphic hardware 

•  Use “Address Event Representation” (AER) to minimize communication 
•  SNNs support a biologically plausible learning algorithm: Spike Timing-

Dependent Plasticity (STDP) 
•  Unsupervised and stable learning rule. 
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Modeling Components at the Neural Circuit Level 
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Some Examples of Neuromorphic Hardware Devices 
Hardware Project: 
Hardware Group 

Hardware Description Neuron 
Models 

Synaptic 
Plasticity 

Max 
Neurons 

Max 
Synapses 

SpiNNaker: 
Industry and UK 

universities 

- Completely digital  
- Consists of array of nodes  
- Each node has 18 ARM9 cores 
- Final goal: 1,036,800 cores 

Spiking: 
Izhikevich 
and non-
spiking 

 
Yes: 

STDP 

1,000 
neurons per 
ARM9 core 

10k synapses 
per ARM9 

core 

 
Neurogrid: 

Stanford University 

- Analog/digital hybrid 
- Full board has 16 neurochips 
- Operates on only 5 W 

Spiking: Two-
compartment 

neurons 

 
No 

65,536 
neurons per 
neurochip 

375M 
synapses per 

neurochip 

True North Cog. 
Architecture: 

IBM SyNAPSE 
Team 

- Completely digital  
- Consists of hierarchical design 
- Neurosynaptic core is basic 
  building block 

Spiking: many 
behaviors 

including LIF 

 
No 

256 neurons 
per neuro-
synaptic 

core 

256K binary 
synapses per 

neuro-
synaptic core 

HRL neural chip: 
HRL Labs, 

SyNAPSE Team 

- Analog/digital hybrid 
- Synaptic weights stored in  
  memristors 

 
Spiking: 

Izhikevich 

 
Yes: 

STDP 

 
576 neurons 

per chip 

70k virtual 
synapses per 

chip 

 
HiCANN: 

BrainScaleS Team 

- Analog/digital hybrid 
- Each wafer has 384 chips 
- Neurons are analog 
- Synapses are digital 

 
Spiking: AdExp 

and I&F 

 
Yes: 

STDP 

 
512 neurons 

per chip 

 
16k synapses 

per chip 

March 4, 2014 GPU Accelerated Simulation and Parameter Tuning 4 



Some Examples of Neuromorphic Software Tools 
Software 
Project 

 
Features 

Parallelized 
Implementations 

 

Implementation 
Language 

Parameter 
Tuning 
Tools 

 
 

NENGO 

- Uses neural engineering framework (NEF) 
- Set weights to perform specific computations 
- Uses both rate-based and spiking neurons 
- Uses neural plasticity rules (STDP) as well 

 
 

None 

 
- Core: Java 
- Python scripting 

 
 

NEF 

 
 

NEST 

- Mature codebase for multiple platforms 
- Includes many neuron and plasticity models 
- Built-in simulation language interpreter 
- Module for creating complex networks 

 
Parallelized MPI 

CPU 
implementation 

 
- Core: C++ 
- Interface: Python 
- PyNN support 

 
 

None 

 
 

Brian 

- Multiple integration methods 
- Multiple neuron and plasticity models 
-  Uses Python plotting packages 
-  Good documentation 

Parallelized CPU 
support 

Parallelized GPU 
support only for 

tuning component 

 
- Core: Python 
- PyNN support 

Support for 
tuning 
neuron 
models 

 
 

CARLsim 

- Fast and efficient CUDA GPU implementation 
- Support for key ion channels 
- GPU parallelized general tuning framework 
- Includes highly optimized CUDA vision 
frontend 

 
Parallelized 
CUDA GPU 

implementation 

- Core: C++ and  
  CUDA 
- Syntax similar to  
   PyNN 

General 
tuning 

framework 
using EAs 
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CARLsim Applications 
•  Used to create large-scale simulations of cognitive processes 

•  10k – 100K neurons with millions of synapses 

•  Sample Applications 
•  Visual Processing 

•   Large-scale model of cortical areas V1, V4, and area MT 
•  Richert, M., Nageswaran, J.M., Dutt, N., and Krichmar, J.L. (2011). An efficient simulation 

environment for modeling large-scale cortical processing. Frontiers in Neuroinformatics 5, 1-15. 

•  Neuromodulation 
•  Top-down and bottom-up attention 

•  Avery, M.C., Dutt, N., and Krichmar, J.L. (2013). Mechanisms underlying the basal forebrain 
enhancement of top-down and bottom-up attention. The European Journal of Neuroscience. 

•  Working memory and behavior 
•  Avery, M., Dutt, N., and Krichmar, J.L. (2013). A large-scale neural network model of the influence of 

neuromodulatory levels on working memory and behavior. Frontiers in Computational Neuroscience 7. 
 

•  Object Categorization 
•  Classifying handwritten digits, semi-supervised learning 

•  Beyeler, M., Dutt, N.D., and Krichmar, J.L. (2013). Categorization and decision-making in a 
neurobiologically plausible spiking network using a STDP-like learning rule. Neural Netw 48, 109-124. 

•  Neural Plasticity 
•  Biologically plausible STDP and Homeostatis 

•  Carlson, K.D., Richert, M., Dutt, N., and Krichmar, J.L. (2013). Biologically Plausible Models of 
Homeostasis and STDP: Stability and Learning in Spiking Neural Networks. Paper presented at: 
International Joint Conference on Neural Networks (Dallas, TX: IEEE Explore) 

•  Code available at: http://www.socsci.uci.edu/~jkrichma/CARLsim 
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Example of Large-Scale SNN Simulation 
 Visual Motion Perception in Cortex 
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Visual Motion Perception 
•  Visual motion perception 

•  Critical for navigating through the 
environment, while tracking objects.  

•  Computationally expensive & memory-
intensive. 

•  Goal / motivation: 
•  Understand cortical machinery for visual 

motion perception through modeling 
•  Build more powerful artificial vision systems  

•  Spiking neural networks (SNN) on GPUs 
•  Low-cost yet high-performance approach 
•  Enables real-time processing of visual 

motion 
•  Potential application for neuromorphic 

hardware 
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Visual Cortex and Motion Perception Model 
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V1 and MT Model 
•  Spatiotemporal-­‐energy	
  model	
  of	
  V1	
  

•  Bank of linear space-time oriented 
filters (rate-based) 

•  Direction-selective cells 
•  Fully realized in CUDA 

•  Two-stage spiking model of MT 
•  Izhikevich spiking neurons: regular-

spiking / fast-spiking 
•  153,216 neurons, ~40 million synapses 
•  Runs in real-time with video (32x32 

pixels). 
•  Conductance-based synapses: 

AMPA, NMDA, GABAA, GABAB 
•  Pattern-direction-selective cells: 

•  direction pooling + opponent inhibition 
•  signal the direction of global (pattern) 

motion 
•  solve the aperture problem 
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Model Response to Motion Patterns 
Component and Pattern Selectivity  
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Large-scale Cortical Model of Motion Perception: 
 Computationally Efficient & Scalable 
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Possible Neuromorphic Application 
 Autonomous Vision Based Navigation 

•  LeCarl – Android Based Robot 
•  Video frames from Samsung Galaxy Smartphone fed to CarlSim 

MT model 
•  For more information on Android Based Robotics: 

•  http://www.socsci.uci.edu/~jkrichma/ABR/index.html 
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Example – Automated Tuning of Large-
Scale SNNs 
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Automated Parameter Tuning Framework 

•  Tuning large-scale spiking neural networks is time 
consuming with many open parameters. 

• Our approach to parameter tuning leverages:  
•  Recent progress in evolutionary algorithms. 
•  Optimization with off-the-shelf graphics processing units (GPUs) 

•  The parameter search is guided by principles of 
neuroscience 
•  Biological networks adapt their responses to increase the amount of 

transmitted information, reduce redundancies, and span the 
stimulus space 
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Automated Parameter Framework for Tuning 
Spiking Neural Networks (SNNs) 
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Efficient Coding  
Hypothesis 
•  Fundamental idea: 

•  Sensory systems adapt their 
responses to the regularities of 
their input 

•  Increase the amount of transmitted 
information at any given time 

1.  Maximize efficiency (reduce 
redundancy) 

2.  Responses should be 
independent of one another 
(decorrelation) 

3.  A stimulus should involve only 
a small fraction of the available 
neurons (sparse) 
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Fitness Function Based on the Efficient 
Coding Hypothesis 

•  Fitnessdecorr ensured decorrelation by forcing each neuron 
to respond maximally to different stimuli 

•  FitnessGauss required Gaussian tuning curves.  Also lead 
neurons to employ their full response range to describe 
the stimulus 

•  FitnessmaxRate limited the maximum firing rate of each 
neuron which contributes to sparsity 
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Tuning SNNs that Generate Self 
Organizing Receptive Fields (SORF) 

•  Network size 
•  4104 neurons 

•  Indirect encoding 
•  14 parameters to 

search 
•  Training phase 

•  40 sinusoidal 
orientations 
presented 

•  2400 presentations 
•  Testing phase 

•  8 sinusoidal 
orientations 
presented to the 
network 

•  Responses of the Exc 
neurons were 
evaluated using the 
ECH fitness function 
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Simulated Visual Cortex Responses to 
Sinusoidal Gratings 
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•  10 SNNs in parallel 
•  Up to 40. 

•  287 EA generations 
in 127 hours. 

•  Run on a single 
NVIDIA Tesla 
M2090 



Synaptic Weight Progression During 
Training for a High Fitness Individual 

•  Synaptic weights for the On(Off)BufferàExc connections 
•  Light regions denote strong weights, dark regions denote weak weights 
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Response Of Neurons To Sinusoidal Gratings 

•  Blue line: firing rate of simulated individual Exc group neuron 
•  Red line: ideal Gaussian tuning curve firing rate response for V1 

March 4, 2014 GPU Accelerated Simulation and Parameter Tuning 24 



Automated Parameter Tuning Framework Performance 
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Conclusions 
•  Large-scale, complex, realistic brain simulations are 

necessary: 
•  For the field of neuromorphic engineering to produce results and 

applications of practical value. 
•  To help computational neuroscientists develop new theories of 

neural function. 
•  To address this challenge, our approach leverages: 

•  Optimization capabilities of evolutionary computation. 
•  Exploits graphical processing unit (GPU) parallelism. 

•  Implementation is compatible with neuromorphic 
hardware. 

•  Framework and examples are publicly available 
•  http://www.socsci.uci.edu/~jkrichma/CARLsim 
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