Computing Architectures based on the Human Auditory Pathway

DARPA / NICE / Sandia Labs meeting
Feb 25, 2013

Lloyd Watts
Founder and Chief Scientist, Audience
Brains can solve real-world problems that computers can’t yet solve (noisy, ambiguous inputs, incomplete data)
- **What algorithms / software architectures can we design to match human performance?**

Brains can solve those problems at vastly lower power consumption than modern PCs (~250 W for ~16 GFlops) or High-Performance Computers (~30 MW(?) for ~17.6 PetaFlops)
- **What hardware architectures or components can allow us to reach brain-like efficiency?**
Audience Introduction

• Founded in 2000, Mission:
 o Reverse Engineer the Human Hearing System
 o Commercialize with dedicated chip products

• First Product:
 o 2-microphone Noise Reduction Chip for Cell Phones, offered in 2007, Hit in 2010, IPO in 2012
Timing is Everything

(Ray Kurzweil, *The Age of Spiritual Machines*, 1999)

(Watts, WCCI talk, 2003)
The Auditory Pathway (as seen in 2012)

Hickok and Poeppel, 2007

Kriegstein and Giraud, 2004
Real-Time Multi-Representation Working Model

Brain-Like Software Architectures

- Brains use high-resolution representations of the world, computed in real-time with low latency
- Many derived representations are computed from raw signals to get a final high-quality answer

- Neuroscience advisors steered me away from spiking representations
- Many different algorithms appear to be running in cortex (associative memory, HMM/Viterbi Search, Pattern Match, etc.) – not just one algorithm (FOXP2 gene as example)
- Neuroscience knowledge has been keeping up with computing capability as hoped in 2000, computing capability keeps advancing (so far)
- Intel has been keeping up for my simulations – core i7, Xeon Phi. Haven’t needed (or been able to exploit) GPU yet
Brain-Like Hardware Architectures for Low-Power SuperComputing

- \(P = N \ C \ V^2 \ f \)
- Many computing elements (large \(N \)), running very slow \((f = 1 \text{ kHz}) \) which leads to small \(V \) (85 mV)
- Special-purpose hardware to implement important, often-used functions (i.e. auditory brainstem).
- Careful power supply management – only activate domain when needed
- This requires MUCH MORE HARDWARE, in a tight space (sphere, block).
 - e.g. cell-phone noise reduction chip \((20\text{mW}, 100\text{MHz}, 4\text{mm}^2, \$1) \)
 - vs. hearing Aid chip \((0.5\text{mW}, 20\text{MHz}, 20\text{mm}^2, \$10) \)
- **A Modest Proposal:** Imagine a 1kg 3D block of silicon (or stacks of chips, all with 10 kHz clocks, each consuming microWatts of power).
 - Much more silicon, therefore very expensive and heavy (like the brain)!
 - But much less cost for heat-sinks, much less air conditioning
- Don’t have to abandon digital processing to get very low power. We would have to really embrace parallelism and low-power design at very high cost in low volumes, suggesting a government funding reason to pursue it (i.e. commercial forces very unlikely to get us there).
PostScript: Event-Driven Simulation of Networks of Spiking Neurons

- After the group discussion, it seemed like this subject may be of interest to some attendees:
 - http://www.lloydwatts.com/spike2.html

- Examples of the Spike simulator:

 Tonic Burster with Ca++ adaptation

 Locust Walking Circuit
Thank you!

www.audience.com

www.lloydwatts.com