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Massive Increase in Computational Power is Needed

Moore’s Law is running out: Hitting the physical limit of
packing conventional computing elements on chips.

Problem size is growing at an exponential rate

e e.g., inference over tera/peta-byte databases.

* — computational power must also scale exponentially.

Two possible sources for computational power increase:
e Hardware
* Software

* New hardware technologies, e.g., memristors, graphenes,

spintronics, 3D packing, etc., may bring several orders of mag.
Improvement.



Massive Computing Power Increase via Software

The greatest gains in computing power will result from a software change.

e By changing from localist to sparse distributed representations (SDR).

Currently, virtually all data is represented using localist representations.

Reasons for SDR’s increased power

1. SDR allows a population of M representational units to represent an >>M
items (hypotheses).

2. SDR allows the likelihoods of ALL stored hypotheses to be computed with:
* asingle pass over the model’s components (weights, units).
* Not, with a single pass over the stored hypotheses.

* Thus, SDR admits a constant time algorithm for computing the MLH, i.e., finding
the closest matching item in memory.

e This in turn allows constant time storage (learning) of new items.

e I'll describe an algorithm that has both these properties.
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Crucial Advantages of SDR over Localism

Localist Representation

Iltem Code

A IV 00000000000
B NG 0000000000
C 00 000000000
D NS 060000000

1 M

e Can only represent M items

* CANNOT represent similarities by
code intersections.

» Activating a localist code of any single
input leaves all other stored codes
completely inactive, regardless of how
similar or relevant their represented
inputs may be.
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SDR
Code (version 1) Code (version 2)
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Can represent >»>M items. The # of unique codes is
mCq (Version 1) & K2 (Version 2).

CAN represent similarity directly by size of code intersections.

Define the activation strength of a code as the fraction of
its units that are active.

If C(A) becomes active, C(B), C(C), and C(D) 1(7)(5)
also simultaneously become partially active 22
in proportion to their intersections with C(A), 0
without any extra computational cycles. ABCD

If code intersection size ~ input similarity, then when hypothesis
A is active, ALL stored hypotheses are simultaneously active in
descending order of similarity (likelihood, relevance).
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Terminology Clarification: Two senses of
“Sparse Representation” in Literature

Sparse Distributed Representation

Every represented item, even at the lowest level: J

is represented by a set of units.

Those sets can overlap.

SDR
Coding
Module

{

RU WTA Cluster

Sparse Basis

The number of features needed to describe an
input space is small compared to the number of
all possible input patterns.

Olshausen & Field (O&F) sense, “sparse
overcomplete basis”

- From Lee, Grosse et al (2011)

All papers that I've seen that describe
learning of sparse bases use localist
representations; one unit per feature.



Localist vs. SDR-based Hierarchical Representations
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distributedness.



Application: Understanding Video
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TEMECOR Algorithm: Constant Time Probabilistic Inference

2.5. Multiply U, H and D, yielding a local

TEMECOR: Temporal Episodic Memory via
Steps 1-2.5 Combinatorial Representations (1996)

Individual neurons sum their bottom-
up (u), horizontal (h), and top-down
(d) inputs.

Normalize them to U, H, and D.

degree of support (evidence), V, that

the neuron should be activated. Top-Down
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TEMECOR Algorithm — Steps 3-8

Minicolumn

( “minC" ) .............

Macrocolumn
( Hmacﬂ )
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Neuron with max V in each minc wins (15 round of competition, hard max)
Compute the average, G, of the max V’s over all Q mincs in a mac.
» G is a measure of the familiarity of total input to the mac.
Modulate the units’ I/O functions so that:
. as G goes to 1, the I/O function becomes an increasingly expansive nonlinearity
. as G goes to 0, it becomes maximally compressive, i.e. the constant function.
Push the V ‘s through modulated I/O function, yielding a relative prob. Vector () in each cluster.
Normalize w to a full probability measure, p.

Final winner in each minc chosen as draw from p distribution (2" round, soft max)

Average
(G) @

A J

Activation Function

LO (Input) @ @ @ @ @ e e @ 9 @ @ @ Modulator (AFM)
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Algorithm Example: Storing First Spatial Input

L1 A_A/z\/-:-‘;\

Round 2: Separate draws
<--- inthe Q=6 mincs (i.e.,
soft max in each cluster)
yields L1 code, S,
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L1 activation function
(i.e., of the V-to-y
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Compute G: average
of the max V's
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Algorithm Example: Presenting Training Input Exactly

A

1\/2V3 0\/1\/2
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1.04
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A A 42

A A 42

Round 2: Separate draws
<--- inthe Q=6 mincs (i.e.,
soft max in each cluster)
yields L1 code, S,

@ Set expansivity (7) of
L1 activation function
(i.e., of the V-to-y
transform)

1000
100
10
L1
0 \V/ 1

Round 1: Find hard max
V in each cluster (ties

broken at random)
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@ Compute G: average
of the max V's
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Algorithm
Example Cont’d:

* Presenting exactly the
same input again
* 100% overlap

* Presenting very
similar input
e 80% overlap

* Presenting very
different input
e 40% overlap

* Presenting entirely
different input
e 0% overlap
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40-frame Sequence N

izing a

: Learning and Recogni

Simulation Results

9 mincs

Q
K

9 units / minc

40-frame 12x12 edge-filtered

snippet from a natural video
(some frames deleted)

9 mincs

Q
K:

9 units / minc

16 mincs
K=16 units / minc

Q=

12x12 Pixels
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40-frame Sequence )

izing a

: Learning and Recogni

Simulation Results

The sequence is presented once.

A hierarchical spatiotemporal trace formed on the fly.

When sequence is presented a 2" time, the exact same memory trace transpires throughout all levels and time steps.

Recognition Trace

Learning Trace

¢ In other words, the model finds the

closest matching hypothesis at each

moment.

100%

e The L1 mac has stored 40 codes.

Each of these codes represents a
particular spatiotemporal

100%

hypothesis, i.e., a particular

“moment”

e On each of the 40 frames, the
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combined U, H, and D signals to L1
conspire to reactivate the one

correct code.

93.75%

e But the algorithm does not iterate

over stored codes.

e A few errors—single unit errors—

are made during the recognition
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¢ This means that when mapped to

hardware, the system is fault

tolerant.
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Formation of a Hierarchical Spatiotemporal SDR Memory Trace N

13 P

L2 OO oD OO

LO - -

e One mac per level
e Different numbers of clusters per mac at each level

e 4x5 pixel aperture
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Conclusions

Massive increase in computing power needed
For general probabilistic inference.

TEMECOR'’s probabilistic inference algorithm does constant time storage
(learning) AND constant time best-match retrieval.

Of spatiotemporal patterns (sequences)
Primarily by using SDR instead of localist codes.
It can mapped to the new hardware technologies.

Corrects errors through time, fault-tolerant



