SCALABLE POWER-EFFICIENT MULTI-TARGET TRACKING USING HYBRID ANALOG COMPUTATIONS

Itamar Arel, Jeremy Holleman
University of Tennessee

Unconventional Processing of Signals for Intelligent Data Exploitation
(UPSIDE)

NICE Workshop
February 2014
Exploit existing and emerging analog-based computations to achieve state-of-the-art target tracking at ultra-low power levels

Key Challenges:
• Imperfections (noise, mismatch, non-linearity, inaccuracy, etc.)
• Mix between analog/digital components
System Architecture Overview

Analog computations based
Correlation-based analog filtering
Dealing with High-dimensionality

- Large visual field contains millions of pixels
- No classifier can handle such dimensionality
 \textit{Curse of dimensionality}
- Standard approach: three-phase process

ROI detection \rightarrow Feature Extraction \rightarrow Classification

$10^6 \rightarrow 10^4 \rightarrow 10^2$
Dealing with High-dimensionality

- Limitations of this approach:
 - Domain specific
 - Requires extensive hand-crafting of features
Deep Machine Learning*

• Biologically-inspired computational intelligence approach

• Goal: autonomously represent saliency in complex observations

• Hypothesis: brain represents the world by exploiting a hierarchy of abstraction

DeSTIN – DL Feature Extraction

Image data

Supervised Classifier

Classification

\[
\sigma\left(b + \sum_{i=1}^{n} a_i w_i\right)
\]
Inference Module (DeSTIN)

- Spatiotemporal pattern learning involves online clustering with feedback-based Bayesian inference.
State-of-the-art results

- MNIST digit recognition dataset
 - 3 layer DeSTIN architecture
 - Mean test classification accuracy of >98.8% was achieved
- Learning can be done off-line or on-line
 - Perceptron learning rule
 - Pre-trained off-line w/ fine-tuning online
The ADE Architecture

Inputs

Video/Image

Pattern

Voice

Raw Data

Belief States

Node

Rich Features

Transmission

Storage

Post-Processing

Classification

System Architecture
Clustering Algorithm
Node Architecture

1-D Conditional mean and variance learner is the core computational unit

- **AAE**: analog arithmetic elements
- **FGM**: floating gate memory

2/24/14

NICE Workshop 2014
Reconfigurable Analog Computation

- Includes wire-subtraction, absolute value, and x^2/y
- Configurable to calculate Euclidean or Mahalanobis distance; update for σ^2, μ
Analog Arithmetic Element

- Absolute circuit rectifies the difference current \(o - \mu \)
- Translinear operator efficiently computes \(X^2/Y \)

\[
V_{GS1} + V_{GS2} = V_{GS3} + V_{GS4}
\]

\[
\rightarrow I_{D1} \cdot I_{D2} = I_{D3} \cdot I_{D4}
\]

\[
\rightarrow X^2 = YZ
\]
Distance Processing Unit

- IN converts D_{MAH} to valid probability distribution B
 \[B = \text{Norm} \left(\frac{1}{D_{MAH}} \right) \]
- WTA finds $\text{argmin}(D_{EUC})$
- Starvation trace addresses unfavorable initial condition
- S/H enables pipelined operation of all the layers
Transistor Size Scaling

- Robustness to static error inherent in learning algorithm allows aggressive device size reduction
- System modeling and simulation provides knowledge of the system’s tolerance to mismatch errors

Young, et al. TNNLS 2013
Clustering Test

- Input Data
- Cluster Means
- Evolution of Centroid Means
- Extracted Variance
- Data Cluster Parameters

\[\mu = (3, 3) \quad \sigma^2 = (1, 1) \]

\[\mu = (7, 7) \quad \sigma^2 = (1.5, 1.5) \]

\[\mu = (7, 3) \quad \sigma^2 = (0.6, 0.6) \]

\[\mu = (7, 3) \quad \sigma^2 = (1, 1) \]
Clustering Test – Starvation Trace

- Clustering test with unfavorable initial condition
Pattern Recognition

Input Pattern

Raw Data

ADE

4-D Rich Features

NN Classifier

Classification Result

100% Recognition Accuracy

95.4% Recognition Accuracy

10% Corruption

20% Corruption

Recognition Accuracy

Percentage Corruption

Measured

Baseline

Lu, et al. ISSCC 2014
Power Comparison

- Synthesized equivalent digital circuit for comparison
- Analog Implementation 288x more efficient

<table>
<thead>
<tr>
<th></th>
<th>Cents x Dims x Nodes</th>
<th>Area (um²)</th>
<th>Power @ Freq</th>
<th>Norm Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital</td>
<td>2x2x1</td>
<td>376x357</td>
<td>61.77mW @ 2MHz</td>
<td>7.7 nJ</td>
</tr>
<tr>
<td>Analog</td>
<td>4x8x7</td>
<td>900x400</td>
<td>27 uW @ 4.5 kHz</td>
<td>27 pJ</td>
</tr>
</tbody>
</table>
Conclusions

- DL systems provide robust general purpose spatio-temporal feature extraction
- Analog computation offers substantial improvements in energy efficiency
 - No discernible degradation in performance relative to digital systems
- Tight coupling between algorithm and hardware/device physics
Acknowledgements

Sponsors

[Images of logos for DARPA, NSF, and IARPA]
Thank you