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Correlation-based analog filtering
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Dealing with High-dimensionality

- Large visual field contains millions of pixels

- No classifier can handle such dimensionality
Curse of dimensionality

- Standard approach: three-phase process

ROI detection Feature Extraction Classification
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Dealing with High-dimensionality

- Limitations of this approach:
- Domain specific
- Requires extensive hand-crafting of features

ROI detection Feature Extraction Classification

2/24/14 NICE Workshop 2014 6



Deep Machine Learning™

- Biologically-inspired
computational intelligence
approach

- Goal: autonomously represent
saliency in complex observations

- Hypothesis: brain represents
the world by exploiting @
hierarchy of abstraction

o "l Arel, D. Rose, T. Karnowski, ""Deep Machine Learning - A New Frontier in Artificial Intelligence Research," IEEE
Computational Intelligence Magazine, November 2010.
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DeSTIN — DL Feature Exiraction

Classification
Supervised
Classifier |:>

Image data
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Inference Module (

DeSTIN)

Spatiotemporal pattern learning involves online
clustering with feedback-based Bayesian inference
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State-of-the-art results

MNIST digit recognitfion
dataset

3 layer DeSTIN
architecture

Mean test classification
accuracy of >98.8% was
achieved
Learning can be done
off-line or on-line
Perceptron learning rule

Pre-trained off-line w/
fine-tuning online
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System Architecture

Post-Processing
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Clustering Algorithm
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Node Architecture
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* AAE: analog arithmetic elements * FGM: floating gate memory
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Reconfigurable Analog Computation

FGM
M

Input o[>
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Memory Errors

Includes wire-subtraction, absolute value, and x2/y

Configurable to calculate Euclidean or Mahalanobis
distance; update for o2, u
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Analog Arithmeftic Element

Absolute circuit rectifies the difference current o-u
Translinear operator efficiently computes X2/Y

Ves1tVes2 = VesztVasy

— Ip1 * gy = Ipslps
— X2=VYZ
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Distance Processing Unit

IN converts Dy, TO o
valid probability Slonr= e
distribution B '

|
B = Norm
(DMa,h)

WTA finds argmin(Dg,)

Starvation frace
addresses unfavorable
initial condition

S/H enables pipelined Starvation
operation of all the
layers
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Transistor Size Scaling

Robustness to static error inherent in learning
algorithm allows aggressive device size reduction

System modeling and simulation provides knowledge
of the system'’s tolerance to mismatch errors
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Young, et al. TNNLS 2013
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Clustering Test

Input Data

+ Cluster Means

Evolution of
Centroid Means

&' Extracted
“..>  Variance

M= Data Cluster
og’°= Parameters

2/24/14 NICE Workshop 2014



Clustering Test — Starvation Trace

Clustering test with unfavorable initial condition
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Pattern Recognition
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Power Comparison
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- Synthesized equivalent
digital circuit for

comparison g}:ii
- Analog Implementation 3’"‘{"-
288x more efficient }:—u

Digital  2x2x1 61.77mW 7.7 nJ
@ 2MHz

Analog 4x8x7 27 UW 27 pJ
@ 4.5 kHz




Conclusions

DL systems provide robust general purpose
spatio-temporal feature extraction

Analog computation offers substantial
Improvements in energy efficiency
No discernible degradation in performance relative to
digital systems
Tight coupling between algorithm and
hardware/device physics
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