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Simulation is a proven TOOL to UNDERSTAND the link
between microscopic and macroscopic features !

Simulation (U Zirich) M 74

©U Zurich and NASA



Santiago Ramon y Cajal
(1852-1934)

Individual cells in the brain
are spatially separate
objects

“interaction
over a distance”

and

“spatial and temporal
integration”




Biology vs. Numerical Simulation

A naive and not quite correct scaling exercise

Cortical Column
0.000003 Watt
100.000 Watt

Mouse Brain
0.03 Watt
1.000.000.000 Watt

Human Brain
30 Watt
1.000.000.000.000 Watt

Installed in D (2010) : 170.000.000.000 Watt

AND : typically 100 times slower than biology




Condensed Matter Physics

Complex Multiparticle (10%3)
System (e.g. Ferromagnet)

Physics approaches towards Understanding of Multiparticle
Systems :

- Systematic experimental observation of collective properties
(magnetisation, phase transitions)

- Probe preparation to observe (some) microscopic features

- Model building, theory and analytical treatment

- Model building, theory and numerical treatment

- Controlled, reduced size, physical model system (synthesis) ?

- e.g.real spinsin a synthetic lattice ?
- QUANTUM EMULATORS ?



Quantum Emulators — Synthesize what you cannot compute

Bloch, Dalibard, Nascimbéene, Nature Physics, Vol. 8, April 2012
Feynman, Int. J. Theor. Phys., Vol. 21, Nos. 6/7, 1982

,Ultracold quantum gases offer a

unique setting for quantum
simulation of
. The high degree of
, the novel

and the extreme

physical that

can be reached in these

provide an exciting complementary
set-up compared with
condensed-matter systems, much in
the spirit of Feynman’s vision of a
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More difficult :
Complex Multiparticle (10't/10%°) System (Brain)

Major differences !

- Short, medium and long range interactions
- High dimensional (>> 3) network topology
- Active, adaptive nodes

- Time dependent (far away from ,therma
- Stores and processes information !

Ill

equilibrium)

Approaches towards understanding :

- Observation of collective properties (memory, synchrony, ...)
- Probe preparation to observe (some) microscopic features

- Model building, theory and analytical treatment

- Model building, theory and numerical treatment

- Controlled, reduced size, physical model system ?

- NEUROMORPHIC SYSTEMS !



The Key Arguments for Neuromorphic Computing

» Low Power (energy per fundamental operation)

» Fault Tolerance

» Plasticity / Learning / Development (,,no algorithm*)
» Speed

» Scalability

The Key Challenges for Neuromorphic Computing

» Neuroscience Knowledge, Flexibility

» Configurability, Technologies for distributed memory
» Integration Density, nano-components, 3D Integration
» Circuit re-Use, CAE Tools

» User Access, Unified software toolset



But there is more to this ..

A radical departure from what is probably the most successful
“science-to-technology roadmap” of humankind :

Boole (Theory) — Shannon (Circuits) — Turing (Programmability)
—von Neumann (Architecture) — Kilby (Integration)

The brain does NOT :

 use Boolean logic (Boole)

e use electronic realisations of logic gates (Shannon)

* use programmed code (Turing)

e use separate memory and compute units (von Neumann)
e use quasi two-dimensional wiring (Kilby)



Where to go from here ?
Knowledge about the brain is INCOMPLETE

Cell complexity ?
Parameter ranges ?
Network architectures ?
Missing Pieces |

Wait (forever) until things are solved .....

Definitely not, instead

e Buildin KNOWN features NOW

e Learn HOW to build neuromorphic systems

 Make systems highly CONFIGURABLE ,,Neural FPGA Concept”
* Make neuromorphic systems available for NON-EXPERTS



The BrainScaleS project aims at understanding function and
interaction of multiple spatial and temporal scales in brain
information processing based on in-vivo experimentation and
computational analysis. Generic theoretical principles will be
extracted to perform artificial synthesis of cortical-like cognitive
skills in numerical simulations and on a novel hybrid multiscale
neuromorphic computer
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Experiments Theoretical models Hybrid Multiscale
Mathematical analysis Facility (HMF)
Brainscale Computer simulation

ScaleS



Developing and Tuning Neuron Models — From Biology to Mathematics to VLSI
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Dynamic threshold Simulated voltage

Gerstner, Naud, Science 326 (2009) 379 + references therein



Adaptive-Exponential Integrate-and-Fire Neuron Model (1)

A s J

— it 10 EIF model

7+ = dynamc IV dala ,
==
6
5
®»
=
|
= I
> 3+
T
2]
| > ek o0
o resting potential SPIRE =
| h’“"*ux‘ 9 PO nmhation ©
1 “k..,. 45
- O O 2,
h\"".n ' \ e
0 J”'h».,. - Q
(V)]
= h~h AN h -'q-;
: *to-u.'*f (@)
Al s - : L Ko SO
-B0 -0 60 -50 40 30 ;
R. Naud et al. =
=

Biol Cybern (2008) 99:335-347



The Adaptive-Exponential IF Neuron Model (1)
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Brette, Gerstner, Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity,
J Neurophysiol 94: 3637-3642, 2005



From Mathematics to Electronics

layout drawing of two neurons: 150x20 pm?

In?ut Neighbour-Neurons
Synin W I
Membrane Spiking/ _, STDP/

1 o Connection Network
I Reset :

Synin v Spikes

T —\ Reset
Input Adapt v

Current-Input Membrane-Output

/

S. Millner et al., A VLSI Implementation of the Adaptive Exponential Integrate-and-Fire Neuron Model, NIPS 2011
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Millner, S., Gribl, A., Meier, K., Schemmel,

J. and Schwartz, M.-O.

A VLS| Implementation of the Adaptive

Exponential Integrate-and-Fire Neuron

Model

Advances in Neural Information Processing

Systems (NIPS) (2010)

combining multiple membrane circuits with 256 synapses each
allows neurons with up to 16k pre-synaptic inputs

L’ .



Neural Processing Unit,
200.000 Neurons, 50.000.000 plastic Synapses, 16.000 syn. I/P per neuron
Separation of Neural Circuits and Monitoring/Readout/Control

Control and
Communication
FPGAs

Control and
Communication
Board with
digital
communication
ASICs

Neural Network
Wafer (8 inch)

BrainscaleS

Wafer-scale integration of analog neural networks
J. Schemmel, J, Fieres and K. Meier
In : Proceedings of IJICNN (2008), IEEE Press, 431

ScaleS
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BrainScaleS HMF in Heidelberg Lab
2 Wafer System in Commissioning State

6 Wafer System to be delived in 2014



Multi-Scale Circuit

17k Structure on 8 inch High Input Count
ey S CMOS Wafer (180nm) Network Chips, 400
ity oy Instances on Wafer,
el L f % } , Length Scale 1 cm
e network routing
el ,‘
-1__1 r 1

/& Plastic Synapses,
50.000.000 Million

Instances on Wafer, v S
Length Scale 10 um |
4-bit SRAM Weights, .~ =

STP, STD, STDP ! | - :“

AdEx Neurons, 200.000 Instances on Wafer, Length Scale 300 pum,
Analog Floating Gate Parameter Storage

Poisson Noise Generators
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Communication Architecture Overview
Hierarchical 2 Layer Communication Setup

® Layer 1: On-Wafer continuous, asynchronous, fixed delay spike transmission

® Layer 2 : Off-Wafer Packet based digital communication for medium and long-
range spike transmission, network set-up, read-out and control.
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Hybrid

Output of _

biologically (Neuromorphic-HPC)

equivalent Multiscale Modelling
data BrainScales HMF

Virtual environment [

B -

.InpUt Of. Microscopic — macroscopic
dV MICroscopic
m—=_gleak(V_El) and ”
dt macroscopic Milliseconds — years
Af = sost— Lore theory

Rapid cycling of experiments




Aggregate Bandwidth from off-Wafer Connections exceeds 1 Terabit/s
On-wafer Information Flow >> 1 Terabit/s

Printed Circuit Board 10.000 Vertical Links Wafgr—to-yvafer
Routing Circuits
Deliver approx. 500 A
to 320 cm? of active silicon
Send and Receive 2 Gbit/s/Link




o e ? ,
Energy efficiency - Surface of the Sun ®

Current Status — ’
Not optimized for Rocket Nozzle &
low power

Accelerated BrainScaleS ANN
wafer at conservative

(maximum) rate : 3 Watts/cm?

Approximately 101°) per
synaptic transmission

Biology : 10'14j per synaptic
transmission

X 10.000 gap downwards to
biology but another large

upwards gap to HPC simulations 15 10T 05 035 025018 013 21 o0
Minumum IC Feature size
N microns
F Pollack

“New microarchitecture challenges in the coming generations of CMOS process technologies”
MICRO-32, Haifa, Israel, 1999.



Energy Scales

1004
1 Joule

10“J
0.1 milliJoule

108 J
10 nanoJoule

10°J
0.1 nanoJoule

104 J
10 femtoJoule

EnergyScales

Energy used for a synaptic
transmission

14 orders of magnitude difference for
,the same thing”

Physical models (Neuromorphic)

- Typically 10.000.000 times more
energy efficient than state-of-the art
HPC (comparable model)

- 10.000 less efficient than biology

From : HBP project report



Continuous Time Integrating Neural Cell
Membrane Model - Neuromorphic

— AN
dV 1
Cm? = gleak(Eleak _V) ‘ 1T E
[ leak
AV [V] 8icak [S] C,, [F] (8AV)/C [VI/s]
Biology(*) | 102 10-8 10-10 100
VLSI 10-! 10-6 10-13 106

(*) Brette/Gerstner, J. Neurophysiology, 2005

R=1/ Eleak V(t)

Cin

Inherent speed
gap.
106 Volt/second

— accelerated
neuron model

28



. : : Accelerated
TI m escales physical model
Detection of causality 10%s 0.1s 108 s

Plasticity 1s 100 s 104 s

Learning day 100 days 10's

Development year 100 years 3000 s

12 Orders of magnitude

: : . > 100
Evolution > millenia : . > month
millenia

> 15 Orders of magnitude

Temporal dynamics is key to understanding (and using) the
computational paradigms of the brain
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Implement Custom Digital Circuits :
A Success Story for Configurable Hardware
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N
S

Biological |y, Model Building
Databases Cells, Network, Plasticity

<=

Formal Network Description

Technology Mapping

}

Technology Routing

Hardware Platform Constraints

Simulation and Neuromorphic
Verfification Substrate




Simulator-spedfic
PyNN module

Python interpreter
Natve inferpreter

Smularr kemel

PyNN : A Platform independent Description Language

for Neural Circuits

PyNN
prren.nest PO poaim pyon boon 2 BN pyrn nesranl 9.’?:'_;2 pyremzase

4 At : At 3

L 2 LV

PYNEST PYPCSIM Brian PyHAL 4 ) PMOOSE

i NawroL i ﬁ

- - i g .
NEST PCSIM e i GENESIS2 | | moose
’ &= Divect communicaton €= Caode geowaton O Inzlamaind O Horned

Integrating and widely accepted toolset for a generic (i.e. simulator
independent) access to neural simulation and hardware

Bringing new computer architecturs (i.e. neuromorphic systems) to
the non-expert neuroscience user




Typical Configuration Space for a Neuromorphic System

approx. 40 MB for a full Wafer

Scope Name Type Description
n/a in Two digital configuration bits activating the neuron and readout of its membrane voltage
[/ in Bias current for neuron leakage circuit
Yoolras in  Bias current controlling neuron refractory time
Neuron E, se Leakage reversal potential
circuits (A) Ein s, Inhibitory reversal potential
exe s« Excitatory reversal potential
Vis s. Firing threshold voltage
veset s, Reset potential
n/a i Two digital configuration bits selecting input of line driver
Synapse line n/a i Two digital configuration bits setting line excitatory or inhibitory
drivers (B) Leime Lhall i Two bias currents for rising and falling sbew rate of presynaptic voltage ramp
[ i Bias current controlling maximum voltage of presynaptic voltage ramp
Synapses (B) w i 4-bit weight of each individual synapse
n/a i Two digital configuration bits selecting short-term depression or facilitation
Usg b Two digital configuration bits tuning synaptic efficacy for STP
STP n/a = Bias voltage controlling spike driver pulse length
related (C) Troc, Ttacll % Voltage controlling STP time constant
I s  Short-term facilitation reference voltage
R % Short-term capacitor high potential
n/'a i Bias current controlling delay for presynaptic correlation pulse (for calibration purposes)
STDP Ay s Two voltages dimensioning charge accumulation per (anti-)causal correlation measurement
related (D) n/a s Two threshold voltages for detection of relevant (anti- jeausal correlation
TSTOP g Voltage controlling STDP time constants




Typical Configuration Space for a Neuromorphic System
approx. 40 MB for a full Wafer

Scope Name Type Description
S — smbrane voltage
)
i 1% [ Synapses
circuits (A) .
[ Floating Gates
M Other
Synapse line
drivers (B) t mp
Synapses (B)

Fig. 4: Sector diagram of the parameter space to configure
STP one HICANN chip. For a full wafer, the configuration data
related (C) 7 :

volume is 44 MB large.

n/'a i Bias current controlling delay for presynaptic correlation pulse (for calibration purposes)
STDP Ay s Two voltages dimensioning charge accumulation per (anti-)causal correlation measurement
related (D) n/a s Two threshold voltages for detection of relovant (anti- jeausal correlation

g Voltage controlling STDP time constants




modify

Phenomenological

verify / Model (P) Generic Computational
falsify LOOp performance

configure
build

measure

HBP Neuromorphic
Computation Platform

resolution scales : Ax,At

> output : O(Ax,At,t)
o config. space: P,
g runtime : AT
. . Data /
Biological

Environment

Loop

Experimental compare Systematic Workflow for
Biology Model and Theory
in-vitro, in-vivo Development /
Verification / Falsification




INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS
2011 EDITION : EMERGING RESEARCH DEVICES, Chapter 5.3

The appeal of neuromorphic architectures lies in

i) their potential to achieve (human-like) intelligence based on unreliable devices
typically found in neuronal tissue

i) their strategies to deal with anomalies, emphasizing not only tolerance to noise and
faults, but also the active exploitation of noise to increase the effectiveness of
operations

iii) their potential for low-power operation.

Traditional von Neumann machines are less suitable with regard to item i), since for this
type of tasks they require a machine complexity (the number of gates and computational
power), that tends to increase exponentially with the complexity of the environment (the
size of the input). Neuromorphic systems, on the other hand, exhibit a more gradual
increase of their machine complexity with respect to the environmental complexity.

Therefore, at the level of human-like computing tasks, neuromorphic machines have the
potential to be superior to von Neumann machines.



Experiments and Applications under Study
In BrainScaleS and HBP - 4 Categories

|.  Fundamental dynamical properties of isolated circuits
Synchronisation, coincidence detection, stability, order-chaos

Il. Implement and test fundamental, generic concepts and theories
Liquid computing, probabilistic inference, neural sampling

Ill. Biologically realistic, reverse engineered circuits in closed loops
Cortical structures, cortical columns, functional units

V. Generic neuromorphic computing outside neuroscience
Neuromorphic controllers, spatio-temporal pattern detection in
data streams, causal relations in big data, approximate computing

All 6 experiments on the following slides run on the SAME
re-configurable physical substrate (chip based system)



Synfire Chain with Feed-Forward Inhibition, Kremkov et al. 2010
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Pfeil T, Gribl A, Jeltsch S, Muller E, Muller P, Petrovici MA, Schmuker M, Briiderle
D, Schemmel J, Meier K (2013). Six networks on a universal neuromorphic computing
substrate. Frontiers in Neuromorphic Engineering 7:11




Balanced random network (Brunel 2000)
asynchronous, irregular firing
Prerequisite for information processing using stochastic inference
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Pfeil T, Gribl A, Jeltsch S, Mdller E, Muller P, Petrovici MA, Schmuker M, Briiderle

D, Schemmel J, Meier K (2013). Six networks on a universal neuromorphic computing
substrate. Frontiers in Neuromorphic Engineering 7:11




Liquid State Machine (Maass et al., 2002 )
with binary tempotron classifier readout
(Gutig&Sompolinsky, 2006)

Distinguish spike train segments in a continuous data stream
composed of two templates (X, Y) with identical rates

A) B)
Input Liquid Readout
0.2 lempotron
Xol

o
o

i
W

X1

o
=

Leaming
' |: 4
correctness
o
L

ot
N

/'-150 -100 -50 Oms
1.0

Y3|Y2[Y1]Yo)

005 (30, -100) (-100. -150)
input interval in (ms, ms)

Pfeil T, Gribl A, Jeltsch S, Mdller E, Muller P, Petrovici MA, Schmuker M, Briiderle
D, Schemmel J, Meier K (2013). Six networks on a universal neuromorphic computing
substrate. Frontiers in Neuromorphic Engineering 7:11




A

Winner-Take-All Circuit (Neftci et al., 2011)
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Pfeil, Thomas, Andreas Griibl, Sebastian Jeltsch, Eric Miller, Paul Mdller, Mihai Petrovici, Michael Schmuker, Daniel Briderle,
Johannes Schemmel, and Karlheinz Meier. "Six networks on a universal neuromorphic computing substrate.”
arXiv preprint arXiv:1210.7083 (2012), accepted by Frontiers in Neuroscience
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Cortical Layer 2/3
attractor memory network
Lundqgvist et al. 2006, 2010
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Insect antennal lobe inspired classification of multidimensional (odor) data
(Schmuker&Schneider 2007)
Decorrelating inputs from sensory neurons - asscociation to choices

0.8
: e 0.6 ' Decorre'lation VS
Input Decorrelation Association E ; inhibition =
© 04} _
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s 202} ™
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hw

sim

Pfeil T, Gribl A, Jeltsch S, Muller E, Muller P, Petrovici MA, Schmuker M, Briiderle
D, Schemmel J, Meier K (2013). Six networks on a universal neuromorphic computing

substrate. Frontiers in Neuromorphic Engineering 7:11

hw w/calib.



BRAIN-DERIVED COMPUTING

» Consistent concept for a novel, brain derived, non-von
Neumann, non-Turing computer architecture

» Accessible to available technologies (CMOS) and
attractive application for future component technologies

(nanoelectronics)

» Key features : Universality, scalability, fault tolerance,
power efficiency, speed, learning

» Accelerated operation : Only known approach to bridge all
timescales relevant for circuit dynamics

» Important next step : Give up simulation as a reference,
exploit device mismatch and noise



THANKS !

Brainsa%E

Scale

brainscales.eu




. The Human Brain Project _

A large-scale

pHBP l
| ¢ coordinated effort
Ill;:?“an over 10 years
B:ﬁ}gct Budget 1.1 B€

Director : Henry Markram (EPFL)
Co-Directors : Richard Frackowiak (CHUV)

Karlheinz Meier (heidelbrg)

A Report to .
NWW

Public Report available :

www.humanbrainproject.org

Approval of 30 months ramp-up
phase received in January 2013

Expected start : October 2013
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HBP

The Human Brain Project

Sub-projects

Multilevel structure of the mouse brain

Multilevel organization of the human brain
Brain function and cognitive architectures
Mathematical and theoretical foundations of brain research
Neuroinformatics Platform

Brain Simulation Platform

High Performance Computing Platform
Medical Informatics Platform
Neuromorphic computing platform
Neurorobotics Platform

Future neuroscience

Future medicine

Future computing

Data Theory Platforms Applications

Molecular and

Cellular Neuroscience

Cognitive Neuroscience

Theoretical Neuroscience

Divisions
(0]
© =
© €
£ S5 5O
2 E |SE
£ n o5
s ¢ to
= = = E
) 8 905
=z m &)

Medical Informatics

Neuromorphic Computing

Neurorobotics

Figure 34: Organisation of work in the HBP. The nine divisions contribute to data generation, platform building and platform use. Dark shaded
areas represent responsibilities for work packages; light shaded areas show contributions to the work programme.




.' The Human Brain Project

Future Computing Platforms

what will they provide ? — a few selected items

High Performance Computing

> Interactive, visual. Exascale supercomputing
» Massive distributed volumes of heterogeneous data
» Convergence with neuromorphic technology

Neuromorphic Computing

> First large-scale neuromorphic systems superior to HPC
» Non-von Neumann (Multicore) + non-Turing (Neuromorph)
» Technology integration (3D, non-CMOS backends)

Neurorobotics

» Virtual robots with two-way, closed loop interfaces
» Link to brain models and neuromorphic systems
» Physical prototypes and applications







